Exam. Code : 103201
 Subject Code : 1029

B.A./B.Sc. ${ }^{\text {st }}$ Semester MATHEMATICS
 Paper-II
 (Calculus \& Trigonometry)

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. The Fifth question may be attempted from any section. SECTION-A

1. (a) If A_{1} and A_{2} are two bounded subsets of R, then show that the set :

$$
A_{1}+A_{2}=\left\{x+y: x \in A_{1} \text { and } y \in A_{2}\right\} \text { is }
$$

bounded. Further if $u_{1}=$ Sup. $A_{1}, u_{2}=$ Sup. A_{2} then prove that $\operatorname{Sup} .\left(A_{1}+A_{2}\right)=u_{1}+u_{2}$.
(b) For what choice of a and b is the function :

$$
f(x)=\left\{\begin{array}{cl}
3, & \text { if } x \leq 2 \\
a x^{2}+b x+1, & \text { if } 2<x<3 \\
7-a x, & \text { if } x \geq 3
\end{array}\right.
$$

continuous for all x .
2. (a) Prove that for given $a>0$ and $b \in R$, there exist a natural number n such that $n a>b$.
(b) Define uniform continuity and show that $f(x)=x^{2}$ is uniformly continuous in $[0,1]$.

SECTION-B

3. (a) If $y=\frac{x \sqrt{x^{2}+a^{2}}}{2}+\frac{a^{2} \sinh ^{-1} \frac{x}{a}}{2}$, then show that

$$
\left(\frac{d y}{d x}\right)^{2}-x^{2}=a^{2}
$$

(b) If $y=e^{m \sin ^{-1} x}$, then prove that :
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}=\left(m^{2}+n^{2}\right) y_{n}$.
Also deduce that $\operatorname{Lim}_{x \rightarrow 0} \frac{y_{n+2}}{y_{n}}=m^{2}+n^{2}$.
4. (a) Prove that :

$$
\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x}}=1
$$

(b) State and prove Taylor's theorem with Lagrange's form of remainder after n terms.

SECTION-C

5. (a) If $\cos (\theta+i \phi)=r(\cos \alpha+i \sin \alpha)$, then prove that $\phi=\frac{1}{2} \log \frac{\sin (\theta-\alpha)}{\sin (\theta+\alpha)}$, where $\alpha, \theta, \phi, r \in R$.
(b) Apply De-Moivre's theorem to find an equation whose roots are the nth power of the roots of the equation $\mathrm{x}^{2}-2 \mathrm{x} \cos \theta+1=0$. 5,5

40(2118)/DAG-6493 2
(Contd.)
www.a2zpapers.com www.a2zpapers.com
ad free old Question papers gndu, ptu hp board, punjab
6. (a) If $x+i y=\cosh (u+i v)$, then show that
$\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$ and $\frac{x^{2}}{\cos ^{2} v}+\frac{y^{2}}{\sin ^{2} v}=1$.
(b) Solve $\mathrm{z}^{7}=1$ and prove that the sum of nth power of its roots is zero or 7 according as n is not or is a multiple of 7 .

5,5

SECTION-D

7. (a) If $i^{\alpha+i \beta}=\alpha+i \beta$, then prove that:

$$
\alpha^{2}+\beta^{2}=e^{-(4 n+1) \beta \pi}, n \in Z .
$$

(b) Express $\cos 5 \theta$ and $\sin 5 \theta$ in terms of powers of $\cos \theta$ and $\sin \theta$ respectively. $\quad 5,5$
8. (a) Sum to n terms the series :
$\cos \theta \sin \theta+\cos ^{3} \theta \sin 3 \theta+\cos ^{5} \theta \sin 5 \theta+$ n terms.
(b) Use Gregory series to prove that :

$$
1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\ldots \ldots \ldots=\frac{\pi}{2 \sqrt{2}}
$$

